e-Learn Lab — Hematology

Based on IQMH Centre for Proficiency Testing Survey MORP 1901-SB
Disclaimer
This document contains content developed by IQMH. IQMH’s work is guided by the current best available evidence at the time of publication. The application and use of this document is the responsibility of the user, and IQMH assumes no liability resulting from any such application or use. This document may be reproduced without permission for non-commercial purposes only and provided that appropriate credit is given to IQMH.

Copyright
The reader is cautioned not to take any single item, or part thereof, of this document out of context. Information presented in this document is the sole property and copyright of the Institute for Quality Management in Healthcare (IQMH).

The logos and/or symbols used are the property of IQMH or other third parties.

© Institute for Quality Management in Healthcare.

All rights reserved.
Focus of this Presentation

• This is a hematology morphology case study.
• You will be presented with patient information and photomicrographs and will be given information about the case for the purpose of self-learning.
Case discussion and photomicrographs provided by the members of the IQMH Hematology Scientific Committee and the IQMH Consultant Technologist.
Patient Information

- 46-year-old female, admitted with lower back pain (osteoporosis) and fever
- Past medical history of rhabdomyosarcoma (age 6)
- Treated with Adriamycin, Vincristine and Cyclophosphamide
Laboratory Data

<table>
<thead>
<tr>
<th>Complete Blood Count</th>
<th>Reference Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte count</td>
<td>3.8×10^9/L</td>
</tr>
<tr>
<td></td>
<td>$4.0–11.0 \times 10^9$/L</td>
</tr>
<tr>
<td>Erythrocyte count</td>
<td>3.87×10^{12}/L</td>
</tr>
<tr>
<td></td>
<td>$4.00–5.10 \times 10^{12}$/L</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>116 g/L</td>
</tr>
<tr>
<td></td>
<td>120–160 g/L</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.365 L/L</td>
</tr>
<tr>
<td></td>
<td>0.350–0.450 L/L</td>
</tr>
<tr>
<td>MCV</td>
<td>94.3 fL</td>
</tr>
<tr>
<td></td>
<td>80.0–100.0 fL</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 pg</td>
</tr>
<tr>
<td></td>
<td>27.5–33.0 pg</td>
</tr>
<tr>
<td>MCHC</td>
<td>318 g/L</td>
</tr>
<tr>
<td></td>
<td>305–360 g/L</td>
</tr>
<tr>
<td>Platelet count</td>
<td>77×10^9/L</td>
</tr>
<tr>
<td></td>
<td>$150–400 \times 10^9$/L</td>
</tr>
<tr>
<td>MPV</td>
<td>10.1 fL</td>
</tr>
<tr>
<td></td>
<td>8.0–13.0 fL</td>
</tr>
</tbody>
</table>
Laboratory Data - Differential

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Result *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils (bands and segmented)</td>
<td>1.1×10^9L</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>0.8×10^9L</td>
</tr>
<tr>
<td>Monocytes</td>
<td>0.1×10^9L</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>0.3×10^9L</td>
</tr>
<tr>
<td>Blasts/Blast Equivalents</td>
<td>1.5×10^9L</td>
</tr>
<tr>
<td>Nucleated Erythrocyte Count</td>
<td>2/100 Lkc</td>
</tr>
</tbody>
</table>

* As reported by five referees
Peripheral Blood Image 1

Wright-Giemsa stain, ×40 magnification
Peripheral Blood Image 2

Wright-Giemsa stain, ×40 magnification
Think about the morphological features and a possible diagnosis before moving to the next slide.
Key Morphological Findings

- Blasts/blast equivalents
- Auer Rods
Patient Diagnosis

Acute myeloid leukemia
• The main morphologic feature is the presence of blast cells, some with Auer rods.
• The blasts are medium in size with scant to moderate amounts of cytoplasm with azurophilic granules and occasionally Auer rods.
• In addition to blast cells, the neutrophils also showed dysplastic changes predominately hypogranulation but also hypolobation.
Discussion

• Blast cells are precursors to mature circulating blood cells.
• They are found in small numbers in the bone marrow and are not found in the peripheral blood of healthy individuals.
• No single morphologic characteristic identifies a blast cell.
Discussion

• In general, blasts are medium to large in size with a large nucleus with immature chromatin, a prominent nucleolus, and scant cytoplasm with or without cytoplasmic granules.

• The morphology of myeloid blast cells is heterogeneous depending on the leukemia cell line and the stage of maturation.

• Despite the cell line of origin, myeloid blast cells often exhibit features indicative of their myeloid lineage including cytoplasmic granules or isolated Auer rods.
Discussion

• Auer rods are pink, needle-like cytoplasmic structures comprised of aggregated cytoplasmic granules.

• The presence of Auer rods is specific to the myeloid lineage and are not a morphologic feature of reactive or neoplastic lymphocytes.
Differentiation From Reactive Lymphocytosis

• Reactive lymphocytosis is most often due to a viral infection.
• Other causes also include but are not limited to bacterial or parasitic infections, autoimmune disorders, smoking, or stress.
• Reactive lymphocytosis has pleomorphic morphology, meaning all cells tend to be different sizes and shapes.
Differentiation From Reactive Lymphocytosis

- Classic reactive lymphocytosis due to a viral infection will often involve small, round lymphocytes (i.e.: classic lymphocyte morphology) in addition to intermediate to large lymphocytes with abundant pale blue or basophilic cytoplasm that “hugs” the red cells.

- The American Society of Hematology Image Bank is a useful resource for examples of reactive and neoplastic lymphocyte morphology.
Differentiation From Reactive Lymphocytosis

- Sometimes the larger lymphocyte forms will have azurophilic granules indicating large granular lymphocytes.
- Large granular lymphocytosis is commonly seen with viral infections, as a reaction to malignancy, or after chemotherapy treatment.
- This heterogeneous morphology in addition to the clinical history are often helpful clues when deciding if the lymphocytosis is pathologic.
Differentiation From Neoplastic Lymphocytosis

- Neoplastic lymphocytosis occurs due to a lymphoproliferative disorder involving the bone marrow.
- Neoplastic lymphocytosis is often monomorphic, meaning all the neoplastic cells tend to be the same size and have similar features.
- The blood film will often show a population of normal lymphocytes in addition to a monomorphous population of neoplastic lymphocytes.
Differentiation From Neoplastic Lymphocytosis

- Similar to blast cells, no single morphologic characteristic identifies a neoplastic lymphocyte.
- However, common features include folded, cleaved, or convoluted nuclei with compact chromatin, cytoplasmic projections, or prominent nucleoli.
- Sometimes neoplastic lymphocytes will have azurophilic granules, but Auer rods are not a morphologic feature of reactive or neoplastic lymphocytes.
Discussion

• Acute myeloid leukemia is a heterogeneous clonal hematopoietic malignancy whereby immature hematopoietic cells proliferate in the bone marrow, peripheral blood, and other tissues.

• The uncontrolled proliferation of immature hematopoietic cells results in bone marrow failure and patients often present with signs and symptoms related to their cytopenias.
Discussion

- Incorporation of multiple diagnostic criteria is needed in order to diagnose and classify hematopoietic disorders.
- The World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissue is an international diagnostic standard that incorporates several diagnostic criteria including clinical features, morphology, immunophenotype, and genetics.
- The bone marrow morphology of the current case confirmed acute myeloid leukemia with myelodysplastic changes in a patient with previous exposure to cytotoxic chemotherapy.
Discussion

• Acute myeloid leukemia with myelodysplasia related changes (AML-MRC) is a specific entity in the WHO classification and is often associated with poor prognosis.
• However, not all AMLs with dysplasia fit into this category.
• Cases of AML with mutations of NPM1 or biallelic mutation of CEBPA can often show dysplastic features but are not included in AML-MRC.
Discussion

• The clinical history indicated this patient had previous exposure (40 years ago) to cytotoxic chemotherapy as well as radiation.

• Therapy related AML is also a designated disease entity in the WHO and can occur as a late complication of cytotoxic chemotherapy or radiation treatment.

• It commonly presents 5-10 years after exposure and often involves unbalanced loss of genetic material, commonly loss of material from chromosome 5 or 7, loss of TP53, or a complex karyotype.
Discussion

• Molecular testing confirmed this patient has AML with biallelic CEBPA gene mutation.
• The revised 4th edition of the WHO includes this entity in a category called “Acute myeloid leukemia with gene mutations”.
• The CEBPA gene codes for a transcription factor that plays an important role in myeloid differentiation.
Discussion

• This mutation is seen in up to 10% of AML cases although a patient must have two mutations (one in both alleles) of this gene in order to be diagnosed in this category.

• Acute myeloid leukemia with biallelic mutation of CEBPA often presents de novo.

• This entity does not have any characteristic morphology although multilineage dysplasia is seen in approximately 26% of cases and does not have any prognostic significance.
• Most cases have morphologic features similar to those of AML with or without maturation. The blast cells express CD34 in addition to typical myeloid antigens (CD13, CD33, and CD15).

• CD7 is expressed in 53-70% of cases.

• This sub-type of AML is generally associated with a favourable prognosis.
Blast cells, reactive lymphocytes, and neoplastic lymphocytes are relatively common blood film findings. Familiarity with their morphologic differences and appropriate classification has an important impact on patient diagnosis.

Subscribe

Join our subscription list for free and be the first to learn about our new e-Learn Lab publications!

Subscribe here:

https://iqmh.org/ess

Choose the subscription lists you want to be added to and make sure one of them is “Centre for Education: e-Learn”